Biochemical characterization of the polysialic acid-specific O-acetyltransferase NeuO of Escherichia coli K1.
نویسندگان
چکیده
Escherichia coli K1 is a leading pathogen in neonatal sepsis and meningitis. The K1 capsule, composed of alpha2,8-linked polysialic acid, represents the major virulence factor. In some K1 strains, phase-variable O-acetylation of the capsular polysaccharide is observed, a modification that is catalyzed by the prophage-encoded O-acetyltransferase NeuO. Phase variation is mediated by changes in the number of heptanucleotide repeats within the 5'-coding region of neuO, and full-length translation is restricted to repeat numbers that are a multiple of three. To understand the biochemical basis of K1 capsule O-acetylation, NeuO encoded by alleles containing 0, 12, 24, and 36 repeats was expressed and purified to homogeneity via a C-terminal hexahistidine tag. All NeuO variants assembled into hexamers and were enzymatically active with a high substrate specificity toward polysialic acid with >14 residues. Remarkably, the catalytic efficiency (k(cat)/K(m)(donor)) increased linearly with increasing numbers of repeats, revealing a new mechanism for modulating NeuO activity. Using homology modeling, we predicted a three-dimensional structure primarily composed of a left-handed parallel beta-helix with one protruding loop. Two amino acids critical for catalytic activity were identified and corresponding alanine substitutions, H119A and W143A, resulted in a complete loss of activity without affecting the oligomerization state. Our results indicate that in NeuO typical features of an acetyltransferase of the left-handed beta-helix family are combined with a unique regulatory mechanism based on variable N-terminal protein extensions formed by tandem copies of an RLKTQDS heptad.
منابع مشابه
Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus.
Potential O-acetylation of the sialic acid residues of Escherichia coli K1, groups W-135, Y, and C meningococci, and group B Streptococcus capsular polysaccharides modifies their immunogenicity and susceptibility to glycosidases. Despite the biological importance of O-acetylation, no sialic or polysialic acid O-acetyltransferase has been identified in any system. Here we show that the E. coli K...
متن کاملCrystal Structure Analysis of the Polysialic Acid Specific O-Acetyltransferase NeuO
The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetylation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransfe...
متن کاملSeparate pathways for O acetylation of polymeric and monomeric sialic acids and identification of sialyl O-acetyl esterase in Escherichia coli K1.
O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion,...
متن کاملDifferential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli.
Host range mutants were derived from bacteriophages PK1A and PK1E specific for the K1 polysialic acid capsule of Escherichia coli. The mutants were selected for their ability to infect E. coli bacteria with a low level of the K1 capsule. A specific loss of the cleaving activity of the phage endosialidase was observed in all the mutants, while the ability to bind specifically to the polysialic a...
متن کاملGene products required for de novo synthesis of polysialic acid in Escherichia coli K1.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 30 شماره
صفحات -
تاریخ انتشار 2007